要想提升教案的有效性,教师应及时更新教学内容,教案应当包含对不同学生群体的关注,以便在教学过程中根据实际情况进行调整,28写作材料小编今天就为您带来了数学五年级上册教案推荐8篇,相信一定会对你有所帮助。
数学五年级上册教案篇1
教学内容
质数和合数
教材第14页的内容及练习四第1~3题。
教学目标
1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。
3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。
重点难点
重点:初步学会准确判断一个数是质数还是合数。
难点:区分奇数、质数、偶数、合数。
教具学具
投影仪。
教学过程
一、创设情境,激趣导入
师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?
师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?
学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。
二、探究体验,经历过程
1.认识质数与合数。
师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?
学生分组进行,找出之后进行分类。
生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。
师:很好,我们可以把它们分类,大家把分类结果填在表中。
投影展示学生的分类结果。
?设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】
师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。
师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)
想一想:最小的质数(合数)是几?最大的呢?
师:所以按照因数个数的多少,自然数又可以分为哪几类呢?
课件出示:可以把非0自然数分为质数和合数以及1,共三类。
2.制作质数表。
投影出示例1。
师:怎样找出100以内的质数呢?
生1:可以把每个数都验证一下,看哪些是质数。
生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……
?设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】
三、课末总结,梳理提升
这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。
板书设计
教学反思
1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。
2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。
数学五年级上册教案篇2
教学内容:教材p2~3例1、例2及练习一第1、2、3题。
教学目标:
知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。
过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。
情感、态度与价值观:感受小数乘法在生活中的广泛应用。
教学重点:理解并掌握小数乘整数的算理,学会转化。
教学难点:能够运用算理进行小数乘整数的计算。
教学方法:迁移类推,引导发现,自主探索,合作交流。
教学准备:多媒体。
教学过程
一、情境导入
1.谈话:同学们都喜欢哪些运动呢?
(生回答自己喜欢的运动……)
2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?
3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?
引导学生观察并思考:图中小明他们想买3个3.5元的风筝需要多少钱?你会列式吗?
指学生回答:3.5×3,教师板书:3.5×3。
4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?
生观察后回答:这道算式的因数有小数。
5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)
二、互动新授
1.初步探究竖式计算的方法。
(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)
(2)让学生说说自己的想法。
指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:
方法1:连加。展示:3.5+3.5+3.5=10.5(元)
师:你是怎么想的?
生:3.5×3就表示3个3.5相加,所以可以用乘法计算。(师板书意义)
方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即3.5×3=10.5(元)。
方法3:把3.5元看作35角,则35角×3=105角=10.5元。
(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算3.5×37
引导:出示(边说边演示):
强调:我们可以把3.5元转化成35角,用35角乘3得105角,再把105角转化成10.5元。注意在列竖式时因数的末尾要对齐。
2.自主探究,进一步理解算理,掌握计算方法。
(1)教师出示算式:0.72×5。
师:同学们看0.72不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。
(2)学生汇报演示。
可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。
(3)比较:(见板书设计)
引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?
生:用乘法比较简便。
(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?
生:先把0.72小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是3.6。
质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?
生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。
(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?
指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“o”时,应先点上小数点,再把“0”去掉。
师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?
学生独立计算,汇报交流。
师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!
三、巩固拓展
1.教材第3页做一做第1题
想一想:小数乘整数与整数乘整数有什么不同?
2.教材第3页做一做第2题
同桌之间相互谈谈是怎样点小数点的。
3.指名板演教材第3页做一做第3题
4.不用计算,你能直接说出下面算式的结果吗?
148×23=3404
14.8×23=( ) 1.48×23=( ) 0.148×23=( ) ( )×( )=34.04
四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)
作业:教材第4页练习练习一第1、2、3题。
数学五年级上册教案篇3
一、 教材分析
本节课内容在人教版五年级上册50——51页,是在学生学完了“可能性”这一单元后,设计了这个以游戏形式探讨可能性大小的实践活动。 教材以连环画的形式来展示活动的过程。从知识内容上看,整个活动分为以下三个层次:
1、组合(质疑)
教材通过让学生同时掷两个相同的骰子(六个面上分别写着数字1~6),把两个朝上的数字相加,看和可能有哪些情况,这是一个"组合"问题。根据前面所学的"组合"知识,学生可以把两个数字相加的和的所有情况列出来。
2、事件的确定性与可能性(实验)
在上面的所有"组合"中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和2,3,4,…,12都是可能发生的事件,但不可能是1和13,这是一个确定事件。
3、可能性的大小(验证)
虽然掷出的两个数的和可能是2,3,4,…,12中的任一个数,但发生的可能性大小是不同的。教材通过游戏的方式,让学生探索、比较掷出各种和的可能性大小,由于学生还不会求掷出每个和的确切"概率",所以只是通过实验粗略地比较一下。
二、 教学目标
1、通过本活动,使学生初步获得一些数学活动的经验,经历"猜想、实验、验证"的过程,引导学生在活动中发现问题,分析问题,体会数学在生活中的应用。
2、初步渗透比较、归纳,概率统计及有序思考等多种数学思想,透过现象看本质,感受偶然性后面的必然性。
3、结合学习内容,对学生进行思想,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
4、通过合作,培养学生的合作意识。
三、教学重、难点
教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。
教学难点: 应用已有的数学知识,探索事件发生的可能性,提高学生的解决问题的能力。
四、课前准备
骰子 、表格、统计图、课件等
五、教学过程:
(一)故事引入,设置悬念
1、老师讲述阿凡提智斗巴依老爷的故事。(课件出示阿凡提图片)。
当时有个地主巴依老爷,十分狡猾奸诈,经常欺压百姓。有一天,巴依老爷又想出了个诡计,想要再一次提高穷人的田租,这次阴谋如果让他得逞,穷人的日子就更不好过了。在这危难时刻阿凡提来了,他代表穷人跟巴依老爷进行谈判,谈判决定,双方利用掷骰子比胜负,如果巴依老爷输了,他将不再加租,比赛方法是:准备两颗骰子,双方每人掷骰子10次,将每次的两颗骰子朝上的数字相加得到“和”,把这些“和”分为两组,一组是“5、6、7、8、9”五个数字,另一组是“2、3、4、10、11、12”这六个数。双方各选一组“和”。掷出来的“和”在哪一组里就算这一组赢一次,掷完后,看谁赢的次数多,谁就获胜。
同学们,你们想让哪方获胜?的确,聪明的阿凡提战胜了巴依老爷,取得了胜利!
2、猜一猜:阿凡提选了哪组“和”?
师:同学们各有各的猜想,那到底阿凡提选了哪组“和”呢?老师先不告诉你们谜底,而是为大家准备了两颗骰子,我们一起动手验证一下。
3、揭示课题
师:当我们有不同意见时,动手试一试是很不错的办法。这节课,就让我们一起来掷一掷。(板书课题:掷一掷。)
(二)学生代表游戏,感知体验
1、你们都玩过骰子吗?(出示“骰子”)一颗骰子中藏着哪些数学知识?(骰子上有6个数、有6个面,是个正方体……)
2、掷一颗骰子,掷出的数可能是哪些?最小是几?最大是几? 掷出每个数的可能性相等吗?(相等)
3、列举“和”的可能
同时掷两颗骰子, 得到的两个面朝上的点数之和可能有哪几种呢?想一想,写一写,再和同桌交流交流。
(1)同时掷两颗骰子,得到两个数的“和”可能有哪些? (2、3、4、5、6、7、8、9、10、11、12)
(2)掷出的两个数的和可能是1或13吗?为什么? (因为两颗骰子最小是1和1,所以最小的“和”是2,不可能是1。)
现在我们把可能出现的11个“和”分成a 、b两组,a组5、6、7、8、9五个数字,b组2、3、4、10、11、12六个数字。
4、游戏:掷一掷
a、b两组各派一名代表,进行掷骰子比赛。
游戏规则:每人轮掷两颗骰子10次,如果和是“5、6、7、8、9”算a组赢,否则算b组赢。
双方代表进行掷骰子游戏,其他同学在记录表中记录。
师:同学们,你们发现了什么?(a组选的“和”种数明明比b组少,怎么会是a组获胜呢?)
(三)动手操作,自主探究
师: a组选的“和”种数明明比b组少,怎么会是a组获胜呢?想不想知道
其中的奥秘?那你们就自己动手验证一下。
1、同桌合作,实验验证
实验方法:
(1)两人一组,轮流掷。一人同时掷两颗骰子并算出两数字和。一人根据掷出的“和”完成“统计图”(横线上的数据表示掷出的“和”,竖线上的数据表示掷出的次数。)“和”是几就在几的上面涂一格,涂满其中一列,游戏结束。
(2)边掷边想:掷出哪些“和”的`次数比较多?你发现了什么?
(学生分小组活动,把结果记录在统计图上,教师巡视,指导有困难的小组)
2、分析记录表,提升猜想(选择几组有代表性的上台展示)
师:已经涂满其中一列的同学,请仔细观察你们的统计图,从图中你发现了什么?同桌两人交流一下。
生1:我们组出现较多的和是5、6、7、8、9
生2:我们组掷出的和中2和12特别少
生3:发现掷出的和在靠近中间位置的次数较多,而靠近两端位置的次数较少……
师:那有一个小组12一次也没掷出来,是不是说不可能掷出12呢?
师:那现在如果让你们再掷一次,要想胜率大一些,你们选择哪组“和”?(和“5、6、7、8、9”这一组,出现的可能性较大)
( 四)回顾整理,反思提升
1、师:为什么掷出和是5、6、7、8、9的可能性较大?里面藏着什么奥妙呢?想不想继续探究探究?
老师为你们准备了一张学习纸,最上面和最左边表示两个骰子上的点数,请你们同桌合作把所有可能出现的和算出来,再认真观察,看看有什么发现。
2、 反馈交流,展示结果:
6+1
5+1 5+2 6+2
4+1 4+2 4+3 5+3 6+3
3+1 3+2 3+3 3+4 4+4 5+4 6+4
2+1 2+2 2+3 2+4 2+5 3+5 4+5 5+5 6+5
1+1 1+2 1+3 1+4 1+5 1+6 2+6 3+6 4+6 5+6 6+6
和: 2 3 4 5 6 7 8 9 10 11 12
师:从这里,我们可以直观地看出掷出的“和”一共有36种情况。 “和”是“2、3、4、10、11、12”的情况只有1+2+3+3+2+1=12种,而和是“5、6、7、8、9”出现的次数共有4+5+6+5+4=24次。24次比12次大得多,出现的可能性也要大得多。
师:现在你认为阿凡提选的是哪组“和”?为什么? (和“5、6、7、8、9”这一组,出现的可能性较大)
3、摸奖活动:
好消息:凡在本商场购物满880元的顾客,可到抽奖箱抽两个数字球,根据两个球上数字的和领取相应的奖品。
摸奖规律:箱内放十二个球,每两个球上分别写着1~6六个数字,每次摸出两个球。
奖项设计:摸出两球之和是“1”为特等奖 ,奖励手机一部。 摸出两球之和是“2”或“12”为参与奖,奖励矿泉水一瓶。
师:看了这个摸奖规则你有什么要说的?
( 五)课堂总结,课外延伸
1、说说这节课的收获。
2、小课题研究
这节课我们利用骰子,经历了“猜想、实验、验证”的过程,研究了骰子“和”中的奥秘。其实,关于骰子中的数学远不止今天我们研究的这些。课后大家可以再去研究研究 。
(1)同时掷2颗骰子,计算出朝上面的2个数的差。你能发现哪些差出现得多?哪些差出现得少?
(2)同时掷3颗骰子,计算出朝上面的3个数的和。你能发现哪些和出现得多?哪些和出现得少?
数学五年级上册教案篇4
教学内容:
教材第27~28页
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环
小数的简便记法。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学重点:
理解循环小数的意义
教学难点:
判断商是否为循环小数的方法
教学过程:
一、创设情景,引入课题
师:同学们,请注意听下面的声音。
师:同学们,如果老师一直播放下去会怎么样?
生:永远放不完。
随学生的回答板书:放不完。
师:同学们说得好,那么为什么会放不完呢?
生:因为都是不断重复那几句话。
板书:不断重复
师:我们生活当中有这样的现象吗
生:有啊,白天到黑夜,春夏秋冬,日出日落,星期一到星期天,一年十二个月等等
师:说得非常好,像这样依次不断重复出现的现象我们就叫它循环。那么在我们的数学王国中有没有这样的循环现象呢。今天我们要来认识一位新的朋友—循环小数。
多媒体课件出示第27页王鹏赛跑的情景图。引导学生观察图意后,列出算式400÷75。
师:请同学们用竖式计算这个算式,看计算过程中你能发现什么?
生:可能发现。
1、继续除下去,永远也除不完。
2、商的小数部分总是重复出现“3”。
师:那同学们知道为什么商的小数部分不断重复3吗
师:我们一起来看看(在黑板上写出计算过程,边写边说)继续除看看,无论除到哪一位,当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。
师:后面还有很多个3,那么我们应该怎么表示商呢?我们这时就可以用个省略符号表示它了。下面同学们再试着再列竖式算一道题目,看跟这道有什么区别。
生:商是从小数点第二位开始出现的,并且重复出现两个数字。
二,认识循环小数
(出示课件,像这样的数叫做循环小数)
引出循环小数的定义。(在黑板上板出还可以这样简写)
师:请同学们计算再15÷16和1.5÷7。
学生计算后,问:从中你发现什么?
生:15÷16=0.9375,1.5÷7=0.2142857?
师:像这样两个数相除,如果得不到整数商,所得的商可能会有两种情况,你知道是哪两种情况吗?
引导学生说出一种是继续除下去能够除尽,像15÷16一样;另一种情况是继续除下去,永远也除不完,像1.5÷7一样。
师:能够除尽的商的小数部分的位数是有限的,我们把它叫做有限小数;永远也除不完的商的小数部分是无限的,我们把它叫做无限小数。循环小数的小数位数是有限的还是无限的?
生:无限的。
师:所以循环小数是无限小数。
四、课堂练习
五、课堂小结
数学五年级上册教案篇5
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:
在现实情境中理解正负数及零的意义。
教学难点:
用正负数描述生活中的现象。
教学准备:
温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的`温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
课后小记:
这节课学生在课堂上的反应是热烈的,但在作业中,发现似是而非的错误较多。特别是在温度计上找零下几度,不是正好的刻度时,容易找错区间,需要加强指导。
数学五年级上册教案篇6
[教学目标]
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
3、在研究质数的过程中丰富对数学发展的认识,感受数学文化的魅力。
[教学重、难点]
1、用小正方形拼长方形的活动中,经历探索质数与合数的过程,理解质数和合数的意义。
2、能正确判断质数和合数。
[教学准备] 学生、老师小正方形若干个。
[教学过程]
一、动手拼长方形,揭示质数、合数的意义
1、用小正方形拼成长方形有几种拼法。让学生自己先尝试着拼一拼,边拼边填写书上的表格。
2、引导学生观察并提出问题:“这些小正方形有的只能拼成一种长方形,有的能拼成两种或两种以上的长方形,为什么?”
3、揭示质数、合数的意义
组织学生观察、比较、分析逐步发现特征,并把几个自然数分类,揭示质数和合数的意义。
从概念出发理解“1既不是质数,也不是合数。”
二、讨论判断质数、合数的方法。
1、尝试判断:2、8、9、13、51、37、91、52 是质数还是合数
先让学生独立判断,再组织交流“怎样判断一个数是质数还是合数”
2、归纳方法:
只要找到一个1和本身以外的因数,这个数就是合数。如果除了1 和它本身找不到其他的因数,这个数就是质数。
三、探索活动:
第1题:
用“筛法”找100以内的质数。引导学生有步骤、有目的地操作、观察和交流,找出100以内的质数。
介绍这种方法是两千多年前希腊数学家提出的研究质数的方法,称为“筛法”。现在随着计算机的发展,这种操作方法可以编成程序让计算机进行操作。这样,可以使学生了解数学发展的历史,感受到数学文化的魅力,丰富学生对数学发展的认识,激起学生探究知识的欲望和兴趣。
第2题:
本题引导学生通过操作、观察,探索规律。
第(1)、(2)题,学生会发现这些质数都分布在第1列和第5列,为什么?
引导观察:因为2,4,6列除2外,其他数都是2的倍数,这些数除1和本身外还有2这个因数,所以不是质数。第3列的数除1和本身外还有3这个因数,所以不是质数。第(3)题理由:用6除一个大于6的自然数,如果余数是0、2、4,这个数肯定是2的倍数;如果余数是3,这个数肯定是3的倍数。
[板书设计]
找质数
拼长方形表格 一个数除了1和它本身以外还有别的因数,这个数就叫合数。一个数只有1 和它本身两个因数,这个数叫做质数。
1既不是质数,也不是合数。
数学五年级上册教案篇7
设计说明
1.创设一定的生活情境,引出可探索的“数学问题”。
“生活即”,数学知识只有来源于生活实际,学生的学习才有可能是积极的、主动的。本节教学设计从给学校的长方形宣传栏刷油漆引入小数乘小数的计算,让学生运用转化思想初步经历小数乘小数的计算方法的探究过程,并让学生在此过程中感受到生活中的许多问题都可以用小数乘法来解决,加深数学与生活的联系。
2.尝试计算、自主探索,主动获得小数乘小数的算理。
?数学课程标准》中指出:“教师教学应该以学生的认知发展水平和已有的经验为基础”。本节教学设计联系原有的学习经验,首先给予学生充分的空间和时间,让学生独立尝试小数乘小数的计算,重点放在对小数乘小数的算理的理解上,不仅要让学生学会怎么计算,更要让学生理解为什么要这么计算。
3.运用计算法则,联系实际解决问题。
数学来源于生活,必然又回归于生活并高于生活。在学生初步掌握小数乘小数的计算法则与算理的基础上,应用生活化的练习让学生的知识得到系统的整理与巩固,并不断拓展、提高学生的思维能力。在学生掌握了小数乘小数的计算方法后,通过不同层次的习题进行巩固。
课前准备
教师准备ppt课件课堂活动卡学情检测卡
教学过程
⊙创设情境,引入新课
(播放课件)我们的校园多美呀!有高大的教学楼、宽阔的操场。(课件出示正在刷油漆的宣传栏)看!工人叔叔正在给宣传栏刷油漆,可是有个问题却难住了他们。你们能帮助他们解决吗?(课件出示教材5页例3)
设计意图:创设生活情境,从给学校的宣传栏刷油漆的场面引入小数乘小数的`计算,既调动了学生的学习兴趣,又渗透了数学来源于生活,且应用于生活的思想。
⊙探究新知
1.教学例3,初步掌握小数乘小数的计算方法。
(1)理解题意。
师:要想知道一共需要多少千克油漆,必须知道什么条件?(宣传栏的面积)
师:那么,宣传栏的面积怎么计算呢?
预设生:因为宣传栏是一个长方形,所以我们只要根据长方形面积的计算公式就可以计算出来。
(2)尝试列式。
师:怎么列式呢?(2.4×0.8)
(3)揭示课题。
(教师指着算式)请同学们观察这个算式,它有什么特点?(因数都是小数)
揭题:这就是我们这节课要学习的小数乘小数。(板书课题)
(4)合作探究。
师:两个因数都是小数,应该怎么计算呢?下面请同学们在小组内讨论一下这道题的计算方法。
(学生在小组内讨论,并汇报)
预设生1:可以利用分米和米之间的进率进行计算。
将“m”改写成“dm”。
2.4m=24dm0.8m=8dm
用竖式计算:
将积的单位“dm2”改写成“m2”:192dm2=1.92m2。
数学五年级上册教案篇8
平均数的初步认识
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的'方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结
数学五年级上册教案推荐8篇相关文章: