为了应付任务而完成的教案是不会让自己的教学能力提高的,老师在制定教案时一定要学会结合实际,下面是28写作材料小编为您分享的负数二教案8篇,感谢您的参阅。
负数二教案篇1
教学目标
1. 使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。
2. 使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。
教学重点
知道正数、负数和0之间的关系。
教学难点
在现实情境中了解负数的产生与应用。
教学过程
课前游戏
(1)对接反义词(师说:前。生答:后)。
(2)教师做动作,学生对相反意义的动作。
引入谈话:在生活中,也有许多类似的意思相反的情况存在,今天这节课,我们将研究如何用数学的方法表达这些内容。
一、 初步认识负数,教学读写方法
1. 情境引入:中央电视台天气预报节目片头。
出示例1:上海、南京和北京图片及温度计图。
提问:从图中你能知道些什么?
学生可能说出:每个城市的气温或两个城市气温之间的比较。
追问:你是怎样知道每个城市气温的?你是怎样看温度计的?
引出摄氏度℃和华氏度?埘的介绍,说明我国是用摄氏度来计量温度的。
引导:上海和北京的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?
请会的学生介绍写法、读法。同时在图片下方出示:4 ℃(+ 4 ℃) - 4 ℃
追问:你怎么知道的?
小结并板书:“+ 4”这个数读作正四,书写这个数时,只要在以前学过的数4的前面加一个正号,“+ 4”也可以写成“4”;“- 4”这个数读作负四,书写时,可以写成“- 4”。
[说明:“零上4摄氏度”和“零下4摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的提出,让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求。同时,学生已有的生活经验,使他们能很快联想到在“4”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。]
2. 巩固气温的表示方法。
练习第2页的“试一试”。
介绍:气候状况与地形特点、海拔高度等有关。
二、 进一步认识负数,了解正、负数与0的关系
1. 课件出示例2直观图,介绍海拔高度的含义:海拔高度是指某地与海平面比较,得到的相对高度。(同步出现与海平面的比较)
提问:你从图中能知道些什么?
要求:你能用今天所学的知识表示这两个海拔高度吗?
学生尝试表达,并说含义。
小结:以海平面为基准,比海平面高8 844.43米,可以记作:+ 8 844.43米;比海平面低155米,可以记作:-155米。
2. 归纳正数和负数。
小结:我们用这些数分别表示零上和零下的温度以及海平面以上和海平面以下的高度。(课件同时呈现:温度计和海拔高度图,其中0℃和海平面用红色线标出)
[说明:教师将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。零度以上、海平面以上为正数,反之,则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。]
引导:观察这些数,你能把它们分类吗?
请学生移动贴纸独立分类,汇报。
提问:你为什么这样分?
学生可能出现:
① + 4、19、+ 8 844.43表示的都是零度以上的气温和海平面以上的高度,- 4、- 11、- 7、- 155表示的都是零度以下的气温和海平面以下的高度。
② + 4、19、+ 8 844.43都大于0,- 4、- 11、- 7、- 155都小于0。
小结:像+ 4、19、+ 8 844.43这样的数都是正数,像- 4、- 11、- 7、- 155这样的数都是负数。正数都大于0,负数都小于0。(完成板书)
3. 练习。
(1)完成第6页第2题。
提问:读一读下面的海拔高度,你知道些什么?(都是负数,低于海平面或比0小)
(2)完成第7页第5题。(图序调整)
题目改为:读一读下面这些温度,你知道些什么?引导学生分别说出:水结冰的温度是0℃,水沸腾的温度是100℃,地球表面的最低气温在南极,是- 88.3℃。
学生可能出现:这些数有的是正数,有的是负数,正数比0大或负数比0小。
[说明:教者将题中三个温度做了适当调整,先让学生读数,再谈读数后的感受,学生有的说水沸腾的温度太高了,有的说地球表面的最低气温太低了。通过读数培养了学生的数感。]
(3)完成第3页“练一练”第1题。
先读一读,指出下列各数中的正数、负数,并把它们填入相应的圈内。
- 5 + 26 8 - 40 - 88.3 + 103 0 12.4
提问:
①0为什么不写?(0既不是正数,也不是负数)
②观察这些正数,你发现了什么?(正数可以是整数、小数或分数。我们以前学过的除0以外的数都是正数)
③你是怎样理解负数的?(负数要小于0,可以是整数、小数或分数)
[说明:本课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,教师在习题中增加了小数和分数,通过练习让学生体会过去已学过的数(除0外)都是正数,沟通新旧知识的内在联系。]
(4)完成第6页第3题。
学生可能出现:
①1、2、3、4、5,- 1、- 2、- 3、- 4、- 5
②有分数、小数或整数(除0外)各种情况。
对于第一种情况,教师引导学生用不同方式读一读写的正数和负数。
如1、- 1、2、- 2……感受正数和负数是相对的,正数有无数个,负数也有无数个。
如1、2、3、4、5,- 1、- 2、- 3、- 4、- 5,感受这组正数读起来越来越大,负数读起来则越来越小。
对于第二种情况,让学生感受到过去学过的除0以外的整数、小数、分数都是正数。
教师随后用数轴表示出正数、负数和0的关系。
[说明:充分挖掘习题功能,在展示学生个性化表达的同时,丰富学生对负数的认识,这是对这道习题深入研究、灵活运用的结果。针对学生出现的第一种情况,巧妙引出正数和负数的对应关系,体会正数和负数是无限的;针对学生出现的第二种情况,让学生在读中体会正数与过去所学过的数之间的联系,同时巧妙地引出数轴,为学生升入中学进一步学习有理数作了很好的渗透。]
三、 在生活中应用负数,初步体会正负数是相反意义的量
1. 提问:在生活中你见过用负数表示的例子吗?(电梯间里标识的楼层数、商场购物导示牌上的正负数)
2. 完成第5页“练一练”第1题。
下面是小明家今年六月份收入和支出的记录。你能说一说小明家各项收入和支出的情况吗?(收入用正数表示、支出用负数表示)
小明家六月份很有意义的一笔支出是什么?
3. 推想一下,生活中还有哪些情况也可以用正数或负数来表示。
介绍第9页“你知道吗”负数的产生史。
总说明
世界是由许多相互矛盾的事物组成的。要想认识这个世界,改造这个世界,就要从这些矛盾的事物入手。数学研究亦是如此。奇与偶,正与负,左与右,一与众,直与曲,动与静等,是一组组对立概念,其中蕴含了对立统一、联系发展这些最朴素的哲学思想,如何通过我们的数学课堂向学生渗透这些思想呢?
课始,引出对立的一组矛盾,用“4”这一个数无法表达两种相反意义的量,怎么办?学生利用已有的生活经验解决矛盾,在数前用不同符号表达两种相反意义的量,使这对矛盾在符号化的思想下得到统一,让学生感受到符号的作用。
课中,利用学生随意写的5个正数和5个负数,引导学生观察,以前学过的整数(除0外)、分数、小数都是正数,在这些数的前面增加一个负号,就有了负数的集合,这样抓住了负数与过去所学的数之间的联系,感受了数的发展。
本课的读数教学也很有特点,注意赋予读数以新的内涵。如让学生在读过南极气温、水沸腾的温度后联系自己的经历说感受,这给了学生更多的体验数的机会,“太冷了”“太烫了”,原来没有生命的数大大丰富了学生的体验,数感也在其中得到了很好的培养。再如,让学生在读数中加深对负数的认识。通过让学生成对地读数:1、-1……让学生在读中感受到负数与正数是对应的,理解负数集合与正数集合同样无限;有序地引导学生读正数或负数,1、2、3、4、5,-1、-2、-3、-4、-5,让学生感受负号后的数越大,值越小,理解负数、0、正数三者间的联系,完成小学阶段对数的结构的初步构建。
负数二教案篇2
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教具学具:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看x疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
七、布置作业
?家庭作业》第1页的练习。
负数二教案篇3
学习目标
1、了解负数是从实际需要中产生 的;
2、能判断一个数是正数还是负数,理解数0表示的量的意义;
3、会用正负数表示实际问题中具有相反意义的量。
重点难点
重点:正、负数的概念,具有相反意义的量。
难点:理解负数的概念和数0表示的量的意义。
教学流程
师生活动 时间 复备标注
一、导入新课
我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的初中学习生活.
老师刚才的介绍中出现了一些数,它们是些什么数呢?
[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.
在生活中,仅有整数和分数够用了吗?
二、新授
1、自学章前图、第2 页,回答下列问题
数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?
什么是正数,什么是负数?
归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.
2、自学第23页,回答下列问题
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?
0有什么意义?
归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
3、用正负数表示具有相反意义的量:自学课本34页
有哪些相反意义的量?
请举出你所知道的相反意义的量?
“相反意义的量”有什么特征?
归纳小结:一是意义相反,二是有数量,而且是同类量。
完成3页练习
4、例题
自学例题,完成 归纳。寻找问题。
完成4页练习
三、课堂达标练习
课本第5页练习1、2、3、4、7、8.
四、课堂小结
1、到目前为止,我们学习的数有哪几种?
2、什么是正数、负数?零仅仅表示“没有”吗?
3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用
负数二教案篇4
教学目标:
1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
理解0既不是正数,也不是负数。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、示例
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、课堂小结
六、布置作业
负数二教案篇5
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:
6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示气温折线统计图)。
哈尔滨:-15 ℃~-3 ℃
北 京: -5 ℃~5 ℃
深 圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么? 现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类: (完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:负数认识。
7.负数的历史。
(1)介绍。
其实,负数是“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:?两算得失相反,要令正负以名之古代用算筹表示数,这句话的意思是:?两种得失相反的数,分别叫做正数和负数并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作();吐鲁番盆地大约比海平面低155米,它的海拔高度应记作()。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作()℃, 夜间的平均温度为零下150℃,记作()℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。 板书设计
负数的认识和意义
正数+6 、+1500 、2.5
负数-6 、-1500 、-2.5
0既不是正数也不是负数
第二课时 用数轴表示正负数 总第二课时
教学目标
认识数轴,并会用数轴上的点表示正负数和0.
教学重点和难点
理解数轴表示正负数的意义,会用数轴上的点表示正负数;同时能够由数轴上的已知点说出其所表示的数。
教学设计
一、以复习负数的意义导入
1.小黑板出示题目:用正数和负数表示下列各量。指名学生将答案写在小黑板上,集体订正。
(1)零上24摄氏度表示为( ),零下3.5摄氏度表示为()。
(2)足球比赛中,赢2球计作( )球,输1球记作()球。
(3)小丽上个月存了压岁钱200元,存折上显示( ),这个星期郊游费取出50元,存折上显示为( )。
(4)超过警戒水位2米,可记作(),正好到警戒水位可记作()。
2.我们已经知道了负数的意义,这节课我们将继续探究生活中的负数,并学习一个可以直观表示负数的好方法。
二、创设情境,探究新知
1.在游戏中体会运动变化中的负数
(1)以讲台为起点,面朝教室门为前,也为正,分为两组,每组派2名代表,一名代表负责根据我的口令向相反的方向走,而另一名同学则在黑板上记录自己同伴走的情况,我们看哪一组反应又快又正确。
(2)游戏过后,提问:如果不用按照相反的口令,直接按照口令执行,那么“记作6步” 他应怎么走?“记作—4步”呢?(指名学生回答)
2.教学第5页例3,学会用数轴表示正负数。
(1)像我们刚才的游戏,例题中以大树为起点,向东为正,那么向西应记为什么?怎么走记为“0”?例题中四个小朋友运动后的情况分别记为什么?(生答师板书)
(2)明确了这点我们可以知道,当规定一个方向为正时,与之相反的方向则为负。这还可以扩展到一切3运动变化中,指定一个运动变化方向为正,那么另一个变化方向就为负。我们的生活中还有那些相反的变化运动呢?
(3)为了更加直观的看,我们在一条直线上来表示他们运动后的情况。这条直线表示他们要走的东西方向的路线,树的位置记为什么?
(4)假设直线打上箭头的方向为东,即为正方向。在直线上从起点开始分出相等的线段,用1cm表示实际的1m.
(5)大家观察一下这条直线,在0的左边,都是什么数?右边呢?像这样的直线就叫数轴。数轴有什么特征?它与直线有什么区别?
(6)它长得比较像什么啊?(出示温度计)大家看这个温度计,我们把它放平放,是不是在0的一边是零下,一边是零上?
(7)现在哪个同学能在这个数轴上表示出—1.5?
(8)根据例题的要求,往东为正,那么如果你从起点要运动到—1.5?
3.教学第6页例4,学习负数大小的比较。
(1)大家看课本上未来一周的天气情况,里面有没有负数?把它读出来。
(2)教师板书数轴,一边画一边讲解画数轴的方法,注意强调,要在直线上确定一点为0,然后再截取等分线段,要求学生在练习本上画数轴。
(3)让我们把每天最低气温在这个数轴上表示出来。
(4)从最低气温来看,周五和周四哪天更冷呢?你是怎么知道的?
(5)我国新疆地区冬季时温度达到—30℃,大概在温度计的那儿?在数轴上表示大约在哪个位置?
(6)正、和0负数之间的大小顺序是怎样的?
(7)我们刚才比较了—8℃和—6℃,知道—8℃更冷,说明哪个温度高呢?哪个数字更大一些呢?
(8)大家观察一下—8和—6在数轴上的点哪个离0近一些?在正方向上,我们知道2比1大,那哪个离0近一些?从数轴的左边到右边的数字有什么规律?从这个情况可以小结出什么呢?小结:在数轴上从左到右的顺序就是数从小到大的顺序,左边的数比右边的小。
(9)如果不用数轴,直接比较两个负数的大小,还可以怎么判断?
三、巩固练习
1.第7页的做一做的第一题。
2.第7页的做一做的第3题。
四.课堂小结
这节课我们学会了什么内容?比较负数的大小可以怎么比较呢?
教学反思
本课时的设计充满着轻松的氛围,以游戏导入,一开始就抓住学生的注意力。将例题用直观有趣味的方式体现,学生在快乐中掌握知识,这其实是新课标要求所提倡和极力达到的要求,能够很好地保护和激发学生的学习兴趣。此外,本课时的设计还有一大特点是在对知识点引起的环节上,注意由学生熟悉的情境引入,注重例题及知识点的教学衔接,避免生硬的知识点教学转化,设计好过渡和引导,使教学环节浑然一体,知识点的衔接也显得水到渠成。
负数二教案篇6
教学目标:
1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。
2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。
3、培养学生获取信息,并进行分析的意识和能力。
4、进行德育渗透,培养学生科学精神和民族自豪感。
教学重点:
了解负数的意义和负数在生活中的应用。
教学难点:
理解负数的意义。
教学用具:
电脑课件、实物投影仪、温度计。
教学过程:
一、创设情境,导入新知。
同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数 数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?
1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。
2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。
3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。
二、探讨交流,感知新知。
(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。
1、展示同学们的记录单(随机进行)
根据同学们的记录情况,启发同学进行分析,相互之间交流看法。
谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)
足球比赛
转学情况
账目结算
上半场 2 四年级 7 三月份 900 下半场
2五年级 3 四月份 100
刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)
看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)
足球比赛
转学情况
账目结算
上半场 进2个 四年级 进7人 三月份 900 下半场 输2个 五年级 出3人 四月份 100
这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)
还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)
2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)
3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:
足球比赛
转学情况
账目结算
上半场 +2 四年级 +7 三月份 +900 下半场 -2 五年级 -3 四月份 -100
谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)
小结:这种记录方法中所用的这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。
(二)认识正数和负数,读、写正、负数。
1、认、读正、负数。
像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。
用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)
小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。
练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)
课件出示:-100,+68,-1.5,+,-,36
请同学们开火车读,其他同学判断。
讨论36是什么数,介绍为了简便起见,正号可以省略不写。
猜猜看,36是正数还是负数?
告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)
在学生充分发表自己的意见后,教师归纳:为了正确的区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?
2、写数,认识“0”
课件出示练习
做完后同学交流结果。
谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)
重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。
3、介绍负数的历史
通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。
⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?
听了他们的介绍,你们想说些什么吗?
⑵、学生谈感受
使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)
(三)寻找生活中的负数,进一步理解负数的意义。
1、从天气预报入手,感知负数的意义。
负数在我们生活中有很多的应用。请看大屏幕,这是2003年11月3日北京市气温分布图。
出示课件:找同学读一读。
谁能读出上面的气温?
区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。
这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)
小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。
2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。
把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。
(四)用直线上的点表示正、负数,并总结规律。
正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。
负数 正数
越来越大
-3 -2 -1 0 1 2 3
越来越小
请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)
三、走进生活,巩固新知。
负数在我们的生活中随处可见。
1、电梯中的负数(出示课件)
下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?
2、存折上的负数。
3、方向问题(出示课件)
我们继续往下看,默读题目,谁读懂了,谁能填空?
4、课本p73例4(出示课件)
请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。
5、刘翔跨栏的画面(出示课件)
认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?
四、归纳总结,质疑问难。
可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。
时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?
看着你们举起的手,大家都有所收获。
哪儿不明白?
我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。
五、留心生活,完成作业。
作业:1、完成自主丛书p43 1、2、3题;
2、课后思考:还有哪些事物可以用正、负数来表示。
板书:
负数 < 0 < 正数
-2 +2 +正号
-3 +7 -负号
-100 +900
负数二教案篇7
一.知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.
二.过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.
三.情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣.
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量.
2.难点:正数、负数概念的综合运用.
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量.
教具准备
投影仪
教学过程
四、复习提问课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
五、新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.
2.20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家20xx年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.
六、巩固练习
1.课本第5页的第8题.
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.
2.补充练习.
若向西走10米,记作-10米,如果一个人从a地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从a地先向东走12米,接着再向西走15米,此人这时应该在a地的西方3米处.
七、课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.
八、作业布置
课本第5页习题1.1第4、5、6、7题.
九、板书设计
正数和负数
负数二教案篇8
一、 教学目标
1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。
2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、 学会用正负数表示实际问题中具有相反意义的量。
二、 教学重点和难点
重点:正负数的概念
难点:负数的概念
三、 教具
投影片、实物投影仪
四、 教学内容
(一 )引入
师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?
生:自然数
师:为了表示“没有”,又引入了一个什么数?
生:自然数0
师:当测量和计算的结果不是整数时,又引进了什么数?
生:分数(小数)
师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]
(二)新课教学
1、 相反意义的量
师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)
(1) 汽车向东行驶2.5千米和向西行驶1.5千米;
(2) 气温从零上6摄氏度下降到零下6摄氏度;
(3) 风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义
请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、 正数与负数
师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?
由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。
生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。
师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?
生:(讨论后得出)不能。
师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
(三)、练习
1、 学生完成课本第4页练习1,2,3
2、 补充练习
(1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;
(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?
(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。
(四)小结
1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
(五)作业
见作业1.1节作业。
负数二教案8篇相关文章: