教案的准备可以帮助我们更好地利用多媒体教学手段,提高教学的互动性,有了教案帮助教师培养自主学习和自我提升的意识,不断提高教学水平,28写作材料小编今天就为您带来了函数性质教案6篇,相信一定会对你有所帮助。
函数性质教案篇1
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
四、课堂引入
寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?
五、例习题分析
例1.见教材第57页
分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是s,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知s是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数s的值,求自变量d的取值,(3)问则是与(2)相反
例2.见教材第58页
分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?
例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气体体积v(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量p与v是反比例函数关系,并且图象经过点a,利用待定系数法可以求出p与v的解析式,得,(3)问中当p大于144千帕时,气球会爆炸,即当p不超过144千帕时,是安全范围。根据反比例函数的图象和性质,p随v的增大而减小,可先求出气压p=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米
六、随堂练习
1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为
2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式
3.一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10时,=1.43,(1)求与v的函数关系式;(2)求当v=2时氧气的密度
答案:=,当v=2时,=7.15
函数性质教案篇2
课题:指数函数与对数函数的性质及其应用
课型:综合课
教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。
重点:指数函数与对数函数的特性。
难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。
教学方法:多媒体授课。
学法指导:借助列表与图像法。
教具:多媒体教学设备。
教学过程:
一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。
二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。
指数函数与对数函数关系一览表
函数
性质
指数函数
y=ax (a>0且a≠1)
对数函数
y=logax(a>0且a≠1)
定义域
实数集r
正实数集(0,﹢∞)
值域
正实数集(0,﹢∞)
实数集r
共同的点
(0,1)
(1,0)
单调性
a>1 增函数
a>1 增函数
0<a<1 减函数
0<a<1 减函数
函数特性
a>1
当x>0,y>1
当x>1,y>0
当x<0,0<y<1
当0<x<1, y<0
0<a<1
当x>0, 0<y<1
当x>1, y<0
当x<0,y>1
当0<x<1, y>0
反函数
y=logax(a>0且a≠1)
y=ax (a>0且a≠1)
图像
y
y=(1/2)x y=2x
(0,1)
x
y
y=log2x
(1,0)
x
y=2x
三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。
y
y=(1/2)x y=2x y=x
(0,1) y=log2x
(1,0) x
y=2x
注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。
四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。
五、 例题
例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。
解:∵ y=ax中, a=Л>1
∴ 此函数为增函数
又∵ ﹣0.1>﹣0.5
∴ (Л)(-0.1)>(Л)(-0.5)
例⒉比较log67与log76的大小。
解: ∵ log67>log66=1
log76<log77=1
∴ log67>log76
注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。
例⒊ 求y=3√4-x2的定义域和值域。
解:∵√4-x2 有意义,须使4-x2≥0
即x2≤4, |x|≤2
∴-2≤x≤2,即定义域为[-2,2]
又∵0≤x2≤4, ∴0≤4-x2≤4
∴0≤√4-x2 ≤2,且y=3x是增函数
∴30≤y≤32,即值域为[1,9]
例⒋ 求函数y=√log0.25(log0.25x)的定义域。
解:要函数有意义,须使log0.25(log0.25x)≥0
又∵ 0<0.25<1,∴y=log0.25x是减函数
∴ 0<log0.25x≤1
∴ log0.251<log0.25x≤log0.250.25
∴ 0.25≤x<1,即定义域为[0.25,1)
六、 课堂练习
求下列函数的定义域
1. y=8[1/(2x-1)]
2. y=loga(1-x)2 (a>0,且a≠1)
七、 评讲练习
八、 布置作业
第113页,第10、11题。并预习指数函数与对数函数
在物理、社会科学中的实际应用。
函数性质教案篇3
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:
描点画出反比例函数的图象
教学用具:
直尺
教学方法:
小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例
即vt=s(s是常数);
当矩形面积s一定时,长a与宽b成反比例,即ab=s(s是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(s是常数)
(s是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4
函数性质教案篇4
一、内容及其解析
(一)内容:指数函数的性质的应用。
(二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。
二、目标及其解析
(一)教学目标
指数函数的图象及其性质的应用;
(二)解析
通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。
三、问题诊断分析
解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。
四、教学过程设计
探究点一:平移指数函数的图像
例1:画出函数 的图像,并根据图像指出它的单调区间.
解析:由函数的解析式可得:
其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的图像沿x轴的负方向平移一个单位而得到的.
解:图像由老师们自己画出
变式训练一:已知函数
(1)作出其图像;
(2)由图像指出其单调区间;
解:(1) 的图像如下图:
(2)函数的增区间是(-,-2],减区间是[-2,+).
探究点二:复合函数的性质
例2:已知函数
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。
解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).
(2)变式训练二:已知函数 ,试判断函数的奇偶性;
简析:∵定义域为 ,且 是奇函数;
探究点三 应用问题
例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的
84%.写出这种物质的剩留量关于时间的函数关系式.
?解】
设该物质的质量是1,经过 年后剩留量是 .
经过1年,剩留量
变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元.
(1)写出本利和 随存期 变化的函数关系式;
(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.
分析:复利要把本利和作为本金来计算下一年的利息.
?解】
(1)已知本金为 元,利率为 则:
1期后的本利和为
2期后的本利和为
期后的本利和为
(2)将 代入上式得
六.小结
通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?
函数性质教案篇5
教学目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学重点:二次函数y=ax2的图象的作法和性质
教学难点:建立二次函数表达式与图象之间的联系
教学方法:自主探索,数形结合
教学建议:
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
教学过程:
一 、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二 、 新授:
(一)动手实践:作二次函数 y=x2和y=-x2的图象
(同桌二人,南边作二次函数 y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)
(二)对照黑板图象 议一议:(先由学生独立思考,再小组交流)
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3. 当x0时,随着x的增大,y如何变化?当x0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三) 学生交流:
1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)
2.二次函数 y=x2 和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的 两个函数y=x2 和y=-x2 图象,根据图象回答:
(1)二次函数 y=x2和y=-x2 的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由 y=x2 的图象如何得到 y=-x2 的图象?
(四) 动手做一做:
1.作出函数y=2 x2 和 y= -2 x2的图象
(同桌二人,南边作二次函数 y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2 x2具有哪些性质吗?
(2)你能说出二次函数 y= -2 x2具有哪些性质吗?
(3)你能发现二次函数y=a x2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)
3.师生归纳总结二次函数y=a x2的图象及性质:
(1)二次函数y=a x2的图象是一条抛物线
(2)性质
a:开口方向:a0,抛物线开口向上,a〈 0,抛物线开口向下[
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3 x2 和 y= -5 x2 有哪些性质
(2)说出二次函数y=4 x2 和 y= 4 x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)
1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线
2.知道二次函数y=a x2的性质:
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
函数性质教案篇6
一、教学内容:
正比例函数的图象和性质
二、教学目标:
(一)知识与能力
1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法
1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。
2、通过观察、探究、分析、引导学生发现正比例函数的性质。
3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观
培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。
三、教学重点:
正比例函数图象的画法及性质的探索。
四、教学难点:
发现、归纳正比例函数的性质。
五、教法与学法
教法:本节课选用引导学生观察,发现法和探索实践归纳法。本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象), 主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
六、教具:三角板、多媒体。
七、教学过程。 教学过程:
(1) 温故知新,引入课题。 1、下列函数哪些是正比例函数?
(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2
2、(学生回答完上述问题后提问概念)
一般地,形如y= kx(k≠0)的函数,叫正比例函数,其中k叫做比例系数。
3、画函数图象的一般步骤
(1)列表 (2)描点 (3)连线 学生回答后:
教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?
出示课题
(二)探究正比例函数的图象和性质 例1、画出下列正比例函数的图象。 (1)y=2x(2)y=-2x
解(1)函数y=2x中x 可取任意实数,列表如下: 描点 连线
(2)学生练习画出函数y=-2x的图象。
(3)提出问题
师:观察上面的函数图象,它们的形状相同吗?是什么?一定经过哪些象限和特殊点?
生甲:一条直线
生乙:过原点的直线,y=2x的图象过一、三象限,y=-2x的图象过二、四象限。
师:点评学生后
正比例函数的图是经过原点(0,0)和(1、k)的一条直线。
师:通过前面的探讨,同学们发现画正比例函数图象有更简单的方法吗?为什么?
生乙:过原点画一条直线。
生丙:过原点和(1、k)两点画一条直线。
师:点评后师生共同归纳出一般规律:一般地,正比例函数y= kx (k≠0)的图象过(0,0),(1、k)两点的直线,我把函数y= kx 的图象叫直线y= kx ,以后画y= kx 图像时通常选取(0,0)和(1、k)两点。
(三)学生动手实践“两点法”画正比例函数图象。
11
(1)y= x (1)y= -x
22
1
y= x
2
y= -
师:比较以上函数,观察它们的图象,思考回答下列问题:
1、图象的位置与k值有何联系?
2、正比例函数中y如何随x的变化而变化?通过研讨,观察、讨论、发现结论:k>0时,y=kx 图象过一、三象限,y随x的增大而增大,k<0时,图象过二、
1
x 2
四象限,y随x的增大而减小。
师:除了从图上看出,还有别的方法得出y随x的变化规律吗? 生:列表过程中
(四)巩固练习
1、用你认为最简单的方法画出下列函数图象。
(1)y=1.5x (2) y=-3x
2、正比例函数y=-4x的图象是过( )和( )两点的一条直线,图象过象限,y随x的。
3、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是。 a.m=1 b.m>1c.m<1 d.m≥1
11
4、下列函数①y=5x ② y=-3x③y= x ④y= -x中,y随x的增大而
23
减小的是 。
5、正比例函数y=(1-2m)xm2-3图象过第二、四限, 求m值。
(五)小结:谈一谈,本节课你有什么收获?(知识上,方法上)学生回答后,出示下列内容。
(六)布置作业
a:课本习题14.2第1题,练习册33页 第3、9 题。 b:课本习题14.2第1,2题。
(七)板书设计:
实践操作正比例函数 分析、发现归纳正巩固练习 图象的画法 比例函数的性质 课堂小结
(八)课后反思:另附
函数性质教案6篇相关文章:
★ 绘画教案6篇
★ 方法教案6篇
★ 区教案推荐6篇
★ 搬礼物教案6篇
★ 自由鸟教案6篇
★ 儿歌夜教案6篇
★ 昆虫瓶教案6篇
★ 春节见教案6篇